

EARLY PROSPECTS FOR ELECTROWEAK PHYSICS IN CMS

N. Adam Princeton University

Overview

- Electroweak physics at the LHC
- □ The CMS Experiment
- Inclusive W & Z Cross-Section Measurements
- Z Differential Cross-Section Measurements
- W Charge Asymmetry
- □ Jet Production in Association with W's & Z's

Electroweak Physics at the LHC

3

Electroweak Physics at the LHC

4

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0$, 31.9 GeV/cInv. mass = 91.2 GeV/c^2 CMS $Z \rightarrow e^+e^-$ Candidate Event

W & Z boson decays are easily identified in the hadronic environment via their signature high transverse momentum leptons.

Electroweak Physics at the LHC

- Leptonic decays of W and Z bosons allow for clean experimental measurement of their production rates.
- Will be among the first physics results at LHC.
 - Expect ~20 W candidates per nb⁻¹
 - Expect \sim 2 Z candidates per nb⁻¹ (M_Z > 40 GeV/c²)
- Important for commissioning CMS and understanding lepton detection in early data.
- With increased statistics can cross-check theoretical cross-section predictions, PDF accuracy, etc. in a new energy regime.

The Compact Muon Solenoid (CMS)

Central feature of the CMS detector is a superconducting solenoid, of 6m internal diameter, providing a field of 3.8T.

The Compact Muon Solenoid (CMS)

Inclusive W & Z Cross-Sections

- Inclusive W or Z to e or μ cross-section measurements at CMS are grouped into e and μ channels.
- $\hfill\Box$ This allows common features of the analyses, e.g. e or μ selection & efficiencies, to share resources.
- In general the cross-sections are measured as:

$$\sigma_{W/Z} \times BR(W/Z \rightarrow \ell \nu / \ell^+ \ell^-) = \frac{N_{W/Z}^{pass} - N_{W/Z}^{bkg}}{A_{W/Z} \varepsilon_{W/Z} \int L dt}$$

The proposed methods for measuring the various quantities for each decay mode in early data are presented in the following slides.

$\rightarrow \mu \nu$ at 10 TeV

- Selection (from MC at 10TeV, cross-sections 30-40% less at 7TeV)
 - Single non-isolated muon trigger
 - Reconstructed muon with p_T > 25 GeV/c, $|\eta|$ < 2.0, isolated (relative sum p_T < 0.09, cone $\Delta R < 0.3$).
 - Transverse mass cut $M_T > 50 \text{ GeV/c}^2$

$W \rightarrow \mu \nu$ at 10 TeV

- Backgrounds: Pion & Kaon backgrounds suppressed (mostly low p_T), punch through negligible, most background from B hadron decays QCD.
- Backgrounds will be estimated directly from data using two methods:
 - Matrix method: Divide M_T vs iso plane into four regions: (iso, M_T), (noniso, M_T), (iso, non- M_T), & (non-iso, non- M_T). The no. of background events in the signal region can be extracted from a relationship between no. of background events in the four regions.
 - Template method: Signal template from $Z \to \mu\mu$ events with one muon dropped, background template from events with isolation criteria inverted. Use templates to fit data and subtract background.
- □ Muon efficiency will come from high purity $Z \rightarrow \mu^+ \mu^-$ samples, and will be obtained using tag & probe techniques.

$W \rightarrow \mu \nu \text{ Event 7 TeV}$

- Selection (from MC at 10TeV, cross-sections \sim 50% less at 7TeV)
 - Single non-isolated muon trigger
 - Require two opposite sign muons with $p_T > 20 \text{ GeV/c}$
 - One muon matched to high level trigger muon track that fired the event
 - Isolated (sum p_T all tracks in $\Delta R < 0.3$ must be < 3 GeV/c).

$Z \rightarrow \mu^+ \mu^-$ at 10 TeV

13

Define 5 uncorrelated categories of muon pairs. Fit the pairs simultaneously to determine signal yield and relevant efficiencies.

- When samples with large statistics are available reconstruction and trigger efficiencies may be determined using tag & probe techniques.
- For early data, when statistics is not large enough to bin efficiency in p_T & η, a simultaneous fitting method can be used.

$W \rightarrow ev$ at 10 TeV

- Selection (from MC at 10TeV, cross-sections 30-40% less at 7TeV)
 - Single electron trigger
 - Reconstructed electron: Association of high E_T supercluster in ECAL and a high p_T track. Require E_T > 30 GeV and |η| < 2.5 (fiducial region).
 - Isolation cuts applied, based on ΔR cone and trk, HCAL, ECAL, sum p_T
 - Additionally have electron shower shape cuts.

$W \rightarrow ev$ at 10 TeV

- □ Backgrounds: Some electroweak background from Z → ee, can be estimated from simulation. Most background from QCD.
- Backgrounds estimated directly from:
 - □ Template method: Signal template from Z → ee events with one electron dropped, background template from events with isolation criteria inverted. Solve for number of signal events using an algebraic method.
- □ Electron efficiency will come from high purity Z → e⁺e⁻ samples, and will be obtained using tag & probe techniques.

$W \rightarrow event at 7 TeV$

$Z \rightarrow e^+e^-$ at 10 TeV

- Selection (from MC at 10TeV, cross-sections 30-40% less at 7TeV)
 - Single electron trigger
 - Two reconstructed electrons:
 Association of high E_T supercluster in ECAL and a high p_T track.
 Require both E_T > 20 GeV and |η| < 2.5 (fiducial region).</p>
 - Isolation cuts applied, based on ΔR cone and trk, HCAL, ECAL, sum p_T (looser than for W)
 - Additionally have electron shower shape cuts.

Backgrounds very small: 0.35% of signal region 70 $< M_{\rm ee} < 110~GeV/c^2$

Z Differential Cross-Sections

- Measure Z → ee crosssection as a function of Z rapidity.
- Can provide
 constraints on parton
 distribution functions
 (PDFs) given sufficient
 statistics.

$$Y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

$$\frac{1}{\sigma} \frac{d\sigma(Z \to ee)}{dY_i} = \frac{\varepsilon \times A}{N - B} \cdot \frac{N_i - B_i}{\Delta_i (\varepsilon \times A)_i}$$

 N_i = Number of Z cands in data B_i = Number of estimated background events Δ_i = Bin width $(\varepsilon \times A)_i$ = Efficiency time acceptance in bin i

Z Differential Cross-Sections

Selection

Loose isolation single e trigger Z cand from e+e-: One electron track + supercluster + isolation. One electron calo+trk or HF $50 (70) < M_{ee} < 150 (110) \text{ GeV/c}^2$ Isolation + shower shape

Efficiency & Acceptance

Efficiency from tag and probe $(\epsilon \times A)$ from measured effs applied to MC events smeared with a fast sim package tuned to Z peak data

Background Subtraction

Assume e⁺e⁻ mass from backgrnd is featureless in the signal region. Fit for the background subtraction with Voigtian (signal) + exp (background).

Z Differential Cross-Sections

Results at 10 TeV with 100 pb⁻¹ of data. Can see results with as little as 10pb⁻¹

W Charge Asymmetry

The process pp \rightarrow W($\mu\nu$) + X has a large cross-section O(10nb) at 10 TeV. Differential cross-section in lepton pseudo-rapidity can be measured with 10pb^{-1} and the W muon charge asymmetry can be measured with <1% statistical error with 100pb^{-1} of data.

$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^{+} \to \mu^{+} \nu) - \frac{d\sigma}{d\eta}(W^{-} \to \mu^{-} \nu)}{\frac{d\sigma}{d\eta}(W^{+} \to \mu^{+} \nu) + \frac{d\sigma}{d\eta}(W^{-} \to \mu^{-} \nu)}$$

The charge asymmetry is sensitive to the underlying parton distribution functions (PDFs) and can be used to distinguish different PDF calculations given enough statistics and control of systematic uncertainties.

W Charge Asymmetry

Selection

- Single muon HLT non-isolated
- □ HLT-matched muon ($|\eta|$ < 2.1)
- □ Muon $p_T > 25 \text{ GeV/c}$
- □ Isolated: $1-p_T/(p_T+iso) < 0.05$

$$m_T = \sqrt{2p_T MET(1 - \cos(\Delta\phi))}$$

W Charge Asymmetry

23

Charge asymmetry with 100pb⁻¹. If errors are controlled PDF shapes can be probed.

W + jets to Z + jets Ratio

24

The double ratio, shown to the right, is predicted by QCD to be ~1 independent of jet multiplicity. With O(100pb⁻¹) of data this can be tested at CMS for up to 4 jets.

Jet Reconstruction

In early data detector understanding will be limited. The SISCone algorithm is used to cluster either calorimeter deposits (calo-jets) or silicon tracks (track-jets).

Eventually can use particle-flow jets and corrected calo-jets.

$$\frac{C_W}{C_Z} = \frac{W + n \text{ jets/}W + (n+1) \text{ jets}}{Z + n \text{ jets/}Z + (n+1) \text{ jets}}$$

Example CMS analysis with 100pb⁻¹ at 10 TeV. Jets from track-jet algorithm. Different parts of phase-space are probed with calojet algorithm.

Summary

- □ First observation of W & Z boson events with less than 10nb⁻¹ of 7 TeV data.
- First mass peak observations and cross-section measurements will be made with few pb⁻¹ – for summer conferences.
- With 10pb⁻¹ can start to measure differential distributions.
- □ With 100pb⁻¹ can start to discern PDF shapes and measure associated Vector Boson + jet production.